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1. INTRODUCTION AND MOTIVATION

Wavelets offer a means of approximating functions that allows selective refinement. If
regions of an image or a signal have exceptionally large variations, one need only store
a set of coefficients, determined by function values in neighborhoods of those regions, in
order to reproduce these variations accurately. In this way, one can have approximations of
functions in terms of a basis that has spatially varying resolution. This approach reduces
the memory storage required to represent functions and may be used for data compre-
ssion.

Physical applications often involve multiple physical fields which interact in space with
non-linear couplings. Efficient implementations must minimize not only storage to represent
the these fields but also the processing required to describe their interactions. It is highly
desirable to perform the needed operations with a fixed, limited number of floating point
operations for each expansion coefficient and to minimize the number of points in space at
which physical interactions must be evaluated.

As a concrete example of a realistic application, consider the computation of the quan-
tum mechanical electronic structure of a collection of atoms in three dimensions. For other
examples of physical applications, the reader may wish to consult [3, 5, 17]et al.. Arias
and coworkers [9, 2] and other works which have appeared after the original submission
of this manuscript nearly one year ago [27, 26], have studied the use of multiresolution
bases in quantum mechanical computations. (For a review, see [1].) It is a consequence of
quantum physics that, near atomic nuclei, electronic wave functions vary rapidly and that,
far from the nuclei, the wave functions tend to be much smoother. From this observation,
one can anticipate that the fine scale coefficients in a multiresolution analysis of the elec-
tronic wave functions and associated physical fields will be significant only near the atomic
cores, allowing for truncation. This problem is thus an ideal candidate for multiresolution
techniques.

Within density functional theory [19], the quantum physics of electrons and nuclei in-
volves two types of fields, the Schr¨odinger wave function{ψi (r )} for each electroni
and the electrostatic potentialφ(r ) arising from the average electronic densityn(r ) ≡∑

i f |ψi (r )|2. Within the local density approximation (LDA) [20], the solution for the cor-
rect values of these fields is obtained at the saddle-point of lowest energy of the
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Lagrangian functional

LL D A({ψi }, φ) = 1

2

∑
i

f
∫

d3r ||∇ψi (r )||2+
∫

d3r Vnuc(r )n(r )+
∫

d3r εxc(n(r ))n(r )

−
∫

d3r φ(r )n(r )− 1

8π

∫
d3r ||∇φ(r )||2. (1)

Here, we work in units ¯h=m= e= 1,Vnuc(r ) is the total potential which each electron
feels due to the presence of the atomic nuclei, andεxc(n) is a nonalgebraic function known
only through tabulated values. (For a review of density functional theory, see [23].)

In practice, one finds the fields{ψi (r )}, φ(r ) by

• expanding the fields in terms of unknown coefficients within some basis set

ψi (x) =
∑
α

cα,i bα(x)

φ(x) =
∑
α

dαbα(x);
(2)

• evaluating Eq. (1) in terms of the unknown coefficientsc andd;
• determining analytically the gradients of the resultingLL D A(c, d)with respect to those

coefficients; and
• proceeding with conjugate gradients to locate the saddle point.

All follows directly once one has expressed the Lagrangian as a function of the expansion
coefficients.

In doing this, we note that each term represents a local coupling in space, but that one
coupling,φ(r )n(r ), is cubic in the field coefficientsc andd, and another,εxc(n(r ))n(r ), is
only known in terms of tabulated values. Expanding the product of two wavelets in terms of
wavelets on finer levels would make possible the treatment of the cubic coupling to some
level of approximation. (See, for example, [6].) However, this route becomes increasingly
difficult for higher order interactions and is hopeless for nonalgebraic or tabulated interac-
tions, such asεxc(n(r )). For higher order interactions it is natural, and for nonalgebraic and
tabulated interactions necessary, to evaluate the interactions at some set of points in space
and then recover expansion coefficients for the result. One then relies upon the basis set to
provide interpolation for the behavior at nonsample points.

The benefits of both truncated wavelet bases and interpolation on dyadically refined
grids are given by the use of interpolating scaling functions [16, 7, 8, 14, 15] (or interpolets
[28, 1]), which are functions with the following properties (from [15, pp. 6–7]).

Let φ(x) be an interpolet, then

(INT1) cardinality: φ(k)= δ0,k for all k∈ Zn

(INT2) two-scale relation:φ(x/2)= ∑y∈ Zn cyφ(x− y)
(INT3) polynomial span: For some integerm ≥ 0, any polynomialp(x) of degreem

can be represented as a formal sum
∑

y∈ Zn a(y)φ(x− y).

Cardinality allows the fast conversion between uniform samples and interpolating scaling
functions and has subtle yet profound consequences for the resulting multiresolution basis.
In particular, as is evident from our algorithms below, the expansion coefficient for a basis
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function on a particular scale is independent of the samples of the function for points
associated with finer scales. Consequently, the expansion coefficients which we obtain for
functions maintained in our basis are identical to what would be obtained were function
samples available on a complete grid ofarbitrarily fine resolution. This eliminates all error
in the evaluation of nonlinear, nonalgebraic, and tabulated interactions beyond the expansion
of the result in terms of a finite set of basis functions.

The cy in the two-scale relation are referred to as scaling coefficients, and cardinality
actually implies thatcy=φ(y/2). The two-scale relation allows the resolution to vary
locally in a mathematically consistent manner.

The polynomial span condition captures, in some sense, the accuracy of the approxima-
tion. By cardinality, we actually havea(y)= p(y). We shall callm the polynomial order.

Interpolets thus can be thought of as a bridge between computations with samples on
dyadically refined grids and computations in a multiresolution analysis. The former point
of view is useful for performing local nonlinear operations, while the latter is useful for the
application of local linear operators.

This manuscript exploresO(N) algorithms that calculate transforms and linear operators
for grids of variable resolution but return, for the coefficients considered,exactlythe same
results as would be obtained using a full, uniform grid at the highest resolutionwithoutthe
need to introduce artificial temporary augmentation points to the grid during processing.
We thus show that with relatively mild conditions on the variability of the resolution pro-
vided by the grid, interpolet bases provided the ultimate economy in the introduction of grid
points: only as many samples in space need be considered as functions used in the basis.
The four transforms (forward, inverse, and the dual to each) mapping between coefficients
and functions samples which we discuss here are particular to interpolet bases. For the
application of operators in such bases, we show that the familiar nonstandard multiply of
Beylkin, Coifman, and Rokhlin [4] shares with the transforms the property of correctness
without the need to introduce additional grid points. Furthermore, we weaken the condition
on grid variability by using a modification of the nonstandard multiply. We generalize the
nonstandard multiply so that communication may proceed between nearby but nonadjacent
levels and thereby obtain less stringent conditions on the variability of the grid. All of the
theoretical results in this manuscript are presented in a generald-dimensional space. Illus-
trative examples for the purpose of discussion will be given ind= 1 andd= 2 dimensions.
The examples of applications in the final section will be ind= 3 dimensions. Our focus is
entirely on interpolet bases, and so it remains an open question whether these results hold
true or can be adapted to more general wavelet systems.

Our organization is as follows. In Sections 2 and 3, we explain how to manipulate and
construct interpolet expansions and some aspects of how well they perform. These sections
will present nothing new to the experienced wavelet user, but will explain our notational
conventions and recapitulates common theorems [12, 24, 13, 25]et al.) for wavelet novices.
In Section 4, we describe how nonuniform bases can be conceptualized in the framework
of interpolet expansions and then use our results to develop algorithms for the transforms.
Section 5 details the algorithm for∇2 and other operators. Section 6 gives some practi-
cal details for the reader interested in implementing these algorithms. Finally, Section 7
compares, in three dimensions, timings of these implementations with the timings of na¨ıve
algorithms. This final section also explores the convergence of a preconditioned conjugate
gradients algorithm in the solution of Poisson’s equation for the full three-dimensional
electrostatic potential arising from the nuclei in the nitrogen molecule.
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2. INTRODUCTION TO INTERPOLETS

There is a unique set of interpolets onR having symmetry and minimal support for a
given polynomial orderm= 2l−1 (theDeslauriers–Dubuc functions[14]). These are the
functions with which this article is primarily concerned (our results carry over to more
general interpolets, and no use will actually be made of minimal support or symmetry).

To determine thecy’s, one setsc2 j = δm0 andcy= c−y. One may solve the Vandermonde
system,


1 1 · · · 1
1 32 · · · (2l − 1)2

1 34 · · · (2l − 1)4

· · ·
1 32l − 2 · · · (2l − 1)2l − 2





c1

c3

.

.

.

c2l − 1

=


1
2
0
.

.

.

0


to obtain the remainingcy’s. These coefficients satisfy the conditions for polynomial order
2l − 1.

The scaling coefficients form= 1 are

c−1= c1= 0.5, c0= 1,

and form= 3 (the example used for Fig.1). They are

c−3= c3=− 1
16, c−1= c1= 9

16, c0= 1.

One may then take tensor products ofφ’s andcy’s to form interpolets in higher dimensions.

FIG. 1. (a) showsφ(x/2)= −1
16
φ(x− 3) + 9

16
φ(x− 1) + φ(x) + 9

16
φ(x + 1) + −1

16
φ(x + 3); (b) shows the

functions−1
16
φ(x− 3), 9

16
φ(x− 1), φ(x), 9

16
φ(x + 1), −1

16
φ(x + 3).
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2.1. Interpolet Multiresolution Analysis

We are concerned with recursive representations of functions from samples at integer
points on both uniform and refined grids. There are many definitions which make the
exposition more clear.

DEFINITION 2.1. For k> 0, let Ck= 2k Zn, and let Dk=Ck− 1−Ck. For k≤ 0, let
Ck= Zn, and Dk=∅.

We considerCk to be the set of coarse lattice points on the lattice 2k−1Zn andDk, the detail
lattice points, to be those points on 2k−1Zn which are not coarse. Note,Dk ∪ Ck=Ck−1,
andZn=Ck ∪ Dk ∪ Dk−1 ∪ · · · ∪ D1 is a partition ofZn.

DEFINITION 2.2. We letθk(y)=min(k,m), where m is the largest integer such that2m

divides all of the components of y. We callθk(y) the level of the point y.

Given the partitionZn=Ck ∪ Dk ∪ Dk−1 ∪ · · · ∪ D1, we have

θk(y)=
{

k, y∈Ck,

l − 1, y∈ Dl .

DEFINITION 2.3. Let S⊂ Zn. Let φ(x) be an interpolet. LetIk(φ, S) be the space of
functions given by formal sums of the form

∑
y∈S a(y)φ((x− y)/2θk(y) ).

Whereφ andSare understood, we may simply writeIk.

DEFINITION 2.4. Let S⊂ Zn. LetFk(S) be the vector space of R- or C-valued functions
on Zn which are zero at any point not in S (i. e., with support contained in S).

Where S is understood, we may simply writeFk. Note,Fk(S)=Fk(S ∩ Ck) ⊕ Fk

(S∩ Dk)⊕ Fk(S∩ Dk−1)⊕ · · · ⊕ Fk(S∩ D1).
The meaning of thek subscript will be established by the next definition, which will link

vectors inFk with functions inIk. It is for this reason that while theF ’s are technically
identical, they are semantically different. In practice, theF ’s are the actual data structures
being stored on the computer.

DEFINITION 2.5. Letφ(x) be an interpolet. Letιφk : S→ Ik(φ, S) be defined by

ι
φ
k y=φ

(
x − y

2θk(y)

)
.

This definition extends linearly to the mappingιφk :Fk(S)→ Ik(φ, S) defined by

ι
φ
kv=

∑
y∈S

v(y)
(
ι
φ
k y
);

i. e., (
ι
φ
kv
)
(x) =

∑
y∈S∩Ck

v(y)φ((x− y)/2k)+
∑

y∈S∩Dk

v(y)φ((x− y)/2k− 1)

+ · · · +
∑

y∈S∩D1

v(y)φ(x− y).
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The setScan be thought of as the set of points in a refined grid. Theι
φ
k identifications allow

one to think ofS as a set of functions,{(ιφk y) | y∈ S}, which form a basis ofIk(φ, S). We
will sometimes refer toSas a refined grid and sometimes as a basis with this identification
understood.

One should think of theFk as spaces of coefficients for function expansions in the
correspondingIk spaces, in the basisS. Theιφk simply associate a set of coefficients inFk

with a function inIk. Whenφ is understood, we may write justιk.
We are now in a position to state the basic theorems of interpolet expansions on uniform

grids.

THEOREM2.6. Letφ(x)be an interpolet on Rn. Then each mappingιk :Fk(S)→ Ik(φ, S)
(k= 1, 2, . . .) is an isomorphism.

Proof. Since the mapιk is surjective, it is only necessary to show thatιk is injective. By
the definition,ιkv= 0 if and only if there existv ∈Fk such that

0 =
∑

y∈S∩Ck

v(y)φ((x− y)/2k)+
∑

y∈S∩ Dk

v(y)φ((x− y)/2k−1)

+ · · · +
∑

y∈S∩ D1

v(y)φ(x− y).

Letz∈ S∩Ck. By (INT1), we haveφ((z− y)/2k)= δ(z− y)/2k,0= δz,y for y∈ S∩Ck and,
also,φ((z− y)/2l )= 0 for y∈ S∩ Dl . So,(ιkv)(z)= v(z), z∈ S∩Ck; therefore,v(z)= 0,
z∈ S∩Ck. This being so, one then has(ιkv)(z)= v(z), z∈ S∩ Dk, sov(z)= 0, z∈ S∩ Dk.
Once again,(ιkv)(z)= v(z), z∈ S∩ Dk−1; thus we must havev(z)= 0, z∈ S∩ Dk−1. Con-
tinuing in this manner, we deduce thatv(y)= 0, y∈ S; thusv= 0.

COROLLARY 2.7.

Ik(S)= Ik(S∩Ck)⊕ Ik(S∩ Dk)⊕ · · · ⊕ Ik(S∩ D1)

Since the sum is direct, the expansion is unique.

This corollary is a consequence of observations in the above proof.

THEOREM2.8. Letφ(x) be an interpolet on Rn. Then

∀k, Ik(φ, Zn)= Ik− 1(φ, Zn).

Consequently,

∀k1, k2, Ik1(φ, Zn)= Ik2(φ, Zn).

Proof. To prove thatIk⊂ Ik−1 we note thatIk⊂ Ik−1 ∪ Ik(Ck). Thus we just need to
showIk(Ck)⊂ Ik−1.

Translating byz∈Ck and inserting powers of 2, where appropriate, one can rewrite
(INT2) for φ as

φ((x− z)/2k)=φ((x− z)/2k−1)+
∑
y∈Dk

cy/2k−1φ((x− z− y)/2k−1).

The terms in the right-hand side are elementsIk−1. ThusIk⊂ Ik−1.
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To proveIk−1⊂ Ik note that any element ofIk−1 can be expressed as

f (x) =
∑

y∈Ck−1

a(y)φ((x− y)/2k−1)+
∑

y∈Dk−1

a(y)φ((x− y)/2k−2)

+ · · ·+
∑
y∈D1

a(y)φ(x− y).

All the terms in this expansion but the first are elements ofIk. SinceCk−1=Ck ∪ Dk we
may split the first sum up as∑

y∈Ck−1

a(y)φ((x− y)/2k−1)=
∑
y∈Ck

a(y)φ((x− y)/2k−1)+
∑
y∈Dk

a(y)φ((x− y)/2k−1).

The second term is also an element ofIk.
Rewriting (INT2) one has (y∈Ck)

φ((x− y)/2k−1)=φ((x− y)/2k)−
∑
z∈Dk

cz/2k−1φ((x− z− y)/2k−1).

y∈Ck, z∈ Dk, so y+ z∈ Dk, thus the right-hand side is made up of elements ofIk.
Thus,Ik−1⊂ Ik.

2.2. Interpolet Transforms

COROLLARY 2.9 (Interpolet Decomposition).The set of isomorphismsιk induces a set
of isomorphisms,

Jk1,k2 :Fk1→Fk2,

Jk1,k2 = ι−1
k2
◦ ιk1.

We refer to these isomorphisms asinterpolet transforms. It is our convention to let
Jk= J0,k and J−k= Jk,0. The reader will note that theJi are linear transformations on the
coefficient spaces and are, thus, the primary object of computation.

We now turn to a study of theJ’s. It is clear from the definition that fork1< k2,
Jk1,k2 = Jk2−1,k2 ◦ Jk2−2,k2−1 ◦ · · · ◦ Jk1,k1+1, and similarly fork1> k2. Thus, we need only
study theJk,k+1 andJk+1,k mappings.

THEOREM2.10 (Computation theorem).Letv ∈Fk(Zn). Then

(Jk,k+1v)(y)=
{
v(y), y /∈ Dk+1,

v′(y), y∈ Dk+1,

wherev′(y)= v(y)− ∑z∈Ck+1
c(y−z)/2kv(z);

(Jk+1,kv)(y)=
{
v(y), y /∈ Dk+1,

v′(y), y∈ Dk+1,

wherev′(y)= v(y)+ ∑z∈Ck+1
c(y+z)/2kv(z).
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Proof. Forv ∈Fk we have

ιkv=
∑
y∈Ck

v(y)φ((x− y)/2k)+
∑
y∈Dk

v(y)φ((x− y)/2k−1)+ · · · +
∑
y∈D1

v(y)φ(x− y).

Expanding the first term,

ιkv =
∑

y∈Ck+1

v(y)φ((x− y)/2k)+
∑

y∈Dk+1

v(y)φ((x− y)/2k)

+
∑
y∈Dk

v(y)φ((x− y)/2k−1)+ · · · .

Using (INT2),φ((x− z)/2k)=φ((x− z)/2k+1)− ∑y∈Dk+1
c(y− z)/2kφ((x− y)/2k),

ιkv =
∑

y∈Ck+1

v(y)φ((x− y)/2k+1)+
∑

y∈Dk+1

v′(y)φ((x− y)/2k)

+
∑
y∈Dk

v(y)φ((x− y)/2k−1)+ · · ·

(
ι−1
k+1ιkv

)
(y)=

{
v(y), y /∈ Dk+1,

v′(y), y∈ Dk+1,

wherev′(y)= v(y)− ∑z∈Ck+1
c(y−z)/2kv(z).

The proof forJk+1,k is similar.

Similar to what one might get with wavelets, we see that we can compute the coefficients
of interpolet expansions on uniform lattices by a pyramid algorithm. Computationally, this
procedure can be carried out by first computing theD1 coefficients withJ0,1; then by
computing theD2 coefficients from theC1 data withJ1,2, and so on. In this sense, it is no
different from standard multiresolution decompositions.

A feature of the interpolet decomposition is that the transformations all have a particular
lower triangularform. That is, if we writev ∈Fk as a vector with itsCk+1 components first,
its Dk+ 1 components second, and the rest of its components third, then the transformation
takes the form,

Jk,k+1v=


I 0 0 0 0
M I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I





vCk+1

vDk+1

vDk

·
·
·

.

The inverse,Jk+1,k, is obtained by replacingM with −M .

3. ACCURACY OF INTERPOLET APPROXIMATION

Given a function f (x) on Rn, one can form an interpolet approximation tof by the
formula

f (x)∼
∑
y∈C0

f (y)φ(x− y)= ι0 f,
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where f on the right-hand side is thought of as a function restricted toC0= Zn (a more
cumbersome but more precise notation isι0{ f (y)} | y∈ Zn). This approximation has the
property that (ι0 f )(z)= f (z), z∈ Zn.

Starting from the expansionι0 f ∈ I0(φ, Zn) one can construct equivalent expansions,
ιk(Jk f )∈ Ik(φ, Zn). The coefficientsJk f are referred to as the interpolet transform of the
function f .

If f (x) is sufficiently smooth, then we can expect that the coefficients(Jk f )(y),
y∈ Dl , l ≤ k, will be small. This statement is captured rigorously by the following lemma
and theorem.

LEMMA 3.1. Letφ be an interpolet with polynomial order of m then

p(x)∈ IN(φ,CN)

for any integer, N, and any polynomial, p, of degree m.

Proof. p(2N x) is a polynomial of degreem. By (INT3), p(x) can thus be represented
by a formal sum inI0(φ,C0), namely

p(2N x)=
∑
y∈Zn

p(2N y)φ(x− y).

By changing variables, we may rewrite this as

p(x) =
∑
y∈Zn

p(2N y)φ(x/2N − y)

=
∑
y∈Zn

p(2N y)φ((x− 2N y)/2N)

=
∑
y∈CN

p(y)φ((x− y)/2N)

=
∑
y∈CN

p(y)φ((x− y)/2θN (y)).

THEOREM3.2 (Residual theorem). Let f(x) be a polynomial function of degree m. Let
φ be an interpolet with a polynomial order of m. Then

(Jk f )(y)=
{

f (y), y∈Ck,

0, y∈ Dl .

Proof. By (INT3), f (x)∈ I0(φ,C0). By the lemma, we also havef (x)∈ Ik(φ,Ck).
Recalling thatJk f gives the unique expansion coefficients off (x) in the decomposition of
I0(φ,C0) given byIk(φ,Ck) ⊕ Ik(φ, Dk) ⊕ · · · ⊕ Ik(φ, D1), we see that theIk(φ, Dl )

coefficients must vanish, while theIk(φ,Ck) coefficients are given by the lemma, namely
f (y) for y∈Ck.

The coefficients(Jk f )(y), y∈ Dl , l ≤ k, are calledresiduals. The residual theorem sug-
gests that the magnitude of the residual coefficients (Jk f ) at a pointy ∈ Dl are expected to
be proportional to the(m+ 1)th derivative of f (x) at y. See Fig. 2.
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FIG. 2. (a) is the smooth functionf (x)= (x/2+ 3)3e−(x/4)
4
: (b) is the approximation tof (x) in I0(Z); (c) is

the component of the approximation inI1(C1); (d) is the component of the approximation inI1(D1).

4. TRUNCATED BASES

Typically, one truncates an expansion by eliminating elements of a basis, setting their
coefficients to 0. One then is said to be working in a truncated basis when one works within
the subspace formed by the remaining basis elements. In the notation of this paper, this
corresponds to taking expansions inIk(φ, S) with coefficients inFk(S).

One may also view a truncated basis as the set of expansions one gets when the coefficients
of some of the basis elements have been set to “don’t care” values. Mathematically, this is
accomplished by quotienting out the “don’t care” elements.

DEFINITION 4.1. Let

IS
k = Ik(φ, Zn)/Ik(φ, Zn− S)

and

FS
k =Fk(Z

n)/Fk(Z
n−S).

When the identification ofFk(S)with F S
k can be made will be dealt with later in this paper.

For now, one may view these definitions as a trick to make the proofs less complicated and
for understanding exactly why and in what sense the algorithms are correct. Once again, we
think ofFS

k as a grid on which the elements outside ofShave “don’t care” values andFk(S)
as a grid on which the elements outside ofS vanish. Theιk continue to be isomorphisms
(sinceιk(Fk(Zn− S))= Ik(φ, Zn− S)).

However, it is not necessarily true thatIS
k1
= IS

k2
. When this condition fails, then it is no

longer possible to defineJk1,k2 = ι−1
k2
◦ ιk1.

To be sure, one could still define some sort ofJk1,k2 by setting the elements inZn−S to
zero, applying the full grid version ofJk1,k2, and then considering only the elements inS
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of the answer. This definition by itself has some drawbacks. Mathematically speaking, this
is the same asJk1,k2 = p ◦ ι−1

k2
◦ ιk1 ◦ r , wherer :FS

k1
→ Fk1, is some lift to the full grid,

and p : Ik2 → IS
k2

is the standard projection operator onto the quotient. Generally, if one
follows this approach one will no longer haveJk1,k2 = Jk2−1,k2 ◦ Jk2−2,k2−1 ◦ · · · ◦ Jk1,k1+1

becauseIS
i are not all equal. In terms of diagrams, where we once had

Fk1

ιk1→ Ik1 = Ik2

ι−1
k2→ Fk2,

we now have

FS
k1

ιk1→ IS
k1

?= IS
k2

ι−1
k2→ FS

k2
.

What one needs is a condition onS such thatIk1(Z
n− S)= Ik2(Z

n− S). If this were
true, then the definition of the operator asJk1,k2 = ι−1

k2
◦ ιk1 would actually be independent

of the values of the elements ofZn−S. In that case the quotient spaces are identical.

DEFINITION 4.2. We say that the set S is a good basis when it satisfies the condition
∀k1, k2, Ik1(Z

n− S)= Ik2(Z
n− S), and thusIS

k1
= IS

k2
.

To get a handle on this definition, one sees that this is achieved whenIk(Zn− S) =
Ik+1(Zn− S). For this to be so, whenevery∈ Zn−S, everyz such thatφ(x/2θN(z)−z) is in
the two-scale expansion forφ(x/2θN(y)−y), must also be a member ofZn−S.

This can be captured in the following table (in which we letθk(y)= θk(z)+ 1):

In expansion? z ∈ S z∈ Zn−S

y∈ S ok ok
y∈ Zn− S not ok ok

The good basis condition for fast synthesis and reconstruction has also been discovered by
Cohen and Danchin (seeS-treesin a coming work [10]) which appeared after the original
submission of our manuscript.

For some of the algorithms presented, we may employ additional conditions based on
the supports of the functions themselves (not just the support of their expansions).

DEFINITION 4.3. We say that functions f and g touch wheneversupp{ f } ∩ supp{g} has
nonzero measure. For p> 0we say that S has the p-level touching property when it satisfies
the condition that for y∈ Zn− S, z ∈ Zn, θk(z) ≤ θk(y)− p; and ιky touchesιkz implies
z∈ Zn− S.

A less formal way of phrasing this definition for the case of 1-level touching is that if a
level l point, y, is a member ofZn− S, then any point,z, at levell − 1 or lower for which
ιky touchesιkz must also be inZn− S. For 2-level touching, one only considers any points
at levell − 2 or lower, and so on forp-level touching.

The allowed touching possibilities can be summarized the following table (in which we
let θk(y) ≥ θk(z)+ p), or Fig. 3 (for p= 1):

Touch? z∈ S z∈ Zn−S

y∈ S ok ok
y∈ Zn− S not ok ok
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FIG. 3. A visual summary of the 1-level touching condition. Solid plots represent functions centered at points
in S. Dotted plots represent functions centered at points inZn− S. Tick marks delimit the overlap of the two
functions.

One example of a 1-level touching good basis for one-dimensional third-order interpolets
(the ones being used as an example) is the set of interpolets centered at the points

S=Cn ∪
(

n−1⋃
l=0

{− 7 · 2l ,−5 · 2l , . . . ,5 · 2l , 7 · 2l
})

(See Fig. 4).The support of the interpolet on level 0 aty is [−3+ y, 3+ y], the union of
all the supports of the interpolets inSon level 0 is [−10, 10]. The support of an interpolet
on level 1 aty is [−6+ y, 6+ y]; thus the only interpolets on level 1 which touch the
interpolets on level 0 are precisely those ones at points−14, . . . ,14, which are precisely
the ones included inS. No interpolet not included on level 1 touches an interpolet included
on level 0 so the definition is satisfied. The argument proceeds similarly on higher levels.
In three dimensions, this example corresponds to nested concentric cubes of size 153 · · ·2l

at each levell < n. Figure 5 shows a randomly generated generic example.
An example of a 2-level touching good basis for third-order is the set of interpolets

centered at the points

S=Cn ∪
(

n−1⋃
l=0

{− 5 · 2l ,−3 · 2l , . . . ,3 · 2l , 5 · 2l
})

.

Note (forn ≥ 2) that this set is not 1-level touching, since the level-1 interpolet centered at
y= 12 is not included, while an interpolet it touches, namely the level-0 interpolet centered
at y= 5, is included. Figure 6 shows an example of a 2-level touching good basis.
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FIG. 4. Our example of the 1-level touching good basis in one dimension. Note that the two functions plotted
do not touch. Tick marks denote the setS⊂ Z.

Finally the set of points

S=Cn ∪
(

n−1⋃
l=0

{− 3 · 2l ,−1 · 2l , 1 · 2l , 3 · 2l
})

forms a good basis, but it is not 1-level touching or 2-level touching, but it is 3-level touching.

FIG. 5. A generic example of a truncation which meets our definitions of good and 1-level touching. In black
are the points ofS⊂ Zn.
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FIG. 6. An example of a 2-level touching good basis which can be used for a diatomic molecule (two atomic
cores). The points inS⊂ Zn are where residual values could be significant.

The above examples are meant to suggest that thegood basisand thep-level touching
definitions can be thought of, informally, as conditions telling one how quickly one can
change from one resolution to another. Essentially, any nested set of refined regions can
satisfy these conditions so long as the margins around the set of points at a given resolution
are wide enough.

From a computational point of view, what these conditions do is ensure that data-paths
which carry coefficient information between different resolutions are not broken by zeroed
coefficients at intermediate levels.

It is clear from the preceding discussion that in a good basis one hasJk1,k2 = Jk2−1,k2 ◦
Jk2−2,k2−1 ◦ · · · ◦ Jk1,k1+1. We may now generalize the computation theorem to a truncated
basis.

THEOREM4.4 (Good basis computation theorem).Let S be a good basis.v ∈Fk(S),
y ∈ S, andṽ is any member of the equivalence class ofv. Then

(Jk,k+1ṽ)(y)=
{
v(y), y∈ S− Dk+1,

v′(y), y∈ Dk+1,

wherev′(y)= v(y)− ∑z∈ S∩Ck+1
c(y−z)/2kv(z);

(Jk+1,kṽ)(y)=
{
v(y), y∈ S− Dk+1,

v′(y), y∈ Dk+1,

wherev′(y)= v(y)+ ∑z∈S∩Ck+1
c(y+z)/2kv(z).

Proof. In a good basis, the computations of allJk1,k2 are independent of the represen-
tative. Thus, this algorithm computed on ˜v gives a member of the same class as would be
computed onv.
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Thus, the pyramid algorithm of the uniform basis,Zn, has a counterpart in a good basis
S, allowing the computation of the expansion coefficients inFk(S) from the values of the
function inF0(S) (and also has the lower triangular structure).

In a good basis, one thus has the ability to perfectly reconstruct the multiscale coefficients
of a function for the basis functions associated with the points of the refined gridSby simply
applying the pyramid algorithm on zero-lifts at each stage of the algorithm. The above
theorem establishes this as true, even though we do not necessarily expect the data zeroed
during the lift to be small. (The function may have significant sample values throughout
the domain of the representation.) Also, with exact recovery of sample values, it is easy to
perform local nonlinear point-wise operations of the formf (x)→G( f (x)) (e.g.,ef (x)), or
point-wise multiplication (i.e.,f (x), g(x)→ f (x)g(x)), despite the truncation.

The reader may note that this result is “analysis-free” in that we have made the com-
putation sparse, not by proving that the coefficients vanish outside of the truncation for
some class of functions, but by showing that the coefficients we wish to compute have no
dependency on the coefficients we omitted. Computationally, this means the data-structure
in the computer requires no intermediate augmentations (contrast with [18]).

The advantages conferred by the additional thep-level properties are seen in the context
of operator evaluation and will be the subject of the next two sections.

5. MULTILEVEL ALGORITHMS FOR ∇2 AND OTHER OPERATORS

Givenv,w ∈Fk(Zn), we may compute the stiffness matrix of a model operator,∇2,

〈ιkv|∇2|ιkw〉=
∫
(ιkv)(x)∇2(ιkw)(x) dnx,

by changing the expansions,

〈ι0J−kv|∇2|ι0J−kw〉=
∑

y,z∈Zn

(J−kv)(y)(J−kw)(z)
∫
φ(x− y)∇2φ(x− z) dnx.

This reduces the computation to computing the matrix elements〈φ(x− (y− z))|∇2|φ(x)〉
which can be done by solving the associated eigen-problem obtained by applying (INT2).

In particular, letL0
y=〈φ(x− y)|∇2|φ(x)〉, then

L0
y =

∑
z1,z2∈Zn

cz1cz2〈φ(2x− 2y− z1+ z2)|∇2|φ(2x)〉

L0
y =

∑
z1,z2∈Zn

22− ncz1cz2 L0
2y+z1− z2

which we solve by standard methods (found in [25], for example). In subsequent sections of
this article, we will also defineL+y =〈φ(x− y)|∇2|φ(x/2)〉, L++y =〈φ(x− y)|∇2|φ(x/4)〉,
L−y =〈φ((x− y)/2)|∇2|φ(x)〉, and L−−y =〈φ((x− y)/4)|∇2|φ(x)〉, which can be com-
puted fromL0 by employing (INT2). Although it is true by hermiticity thatL−y = L+y and
L−−y = L++y , we will make no use of this fact.

One can write a matrix expression〈ιkv|∇2|ιkw〉= vt Jt
−kL J−kw, where theL is the

Toeplitz matrix with coefficientsL0
y. In practice, one typically formulates the preceding as
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a computation ofu= Jt
−k DJ−kw for somew ∈ Fk(Zn). Then〈ιkv|∇2|ιkw〉= vt u; u may be

thought of as an element ofFk(Zn)∗, the dual space ofFk(Zn). The task is then to compute
the coefficientsu(y), y ∈ Zn=Ck ⊕ Dk ⊕ · · · ⊕ D1. Any algorithm for computingxt Ay
can be adapted to an algorithm forAy, and for purposes of making proofs it is somewhat
easier to keep thinking of the computation as〈ιkv|∇2|ιkw〉, which is the point of view we
shall take.

However, computing〈ιkṽ|∇2|ιkw̃〉= ṽt Jt
−kL J−kw̃, by just applying the transforms and

the Toeplitz matrix is problematic, since this process makes it necessary to either representv

andw on a uniform grid, or to compute a matrix element between each pair of functions in the
truncated expansion which touch. In the first case, one ends up with anO(N) computation
for (typically) a very largeN . In the second case, one chooses between extremes which are
O(N) and quite complicated or simple andO(N2).

The following sections outline the design of multilevel algorithms for∇2 for both 1-level
and 2-level touching bases. Both algorithms are derived according to the following format:

break up the expansion of〈ιkv|∇2|ιkw〉 into a decomposition over elements at the same
level and adjacent levels.

rewrite the expansions in terms of the matrix elements between elements of those levels
and the transforms of higher/lower level elements.

implement the algorithm by computing those terms separately.
establish correctness in ap-level truncated basis.

Although only the 1-level and 2-level algorithms have been explored in any detail, this
same process will generally work to produceO(N) p-level algorithms for anyp.

5.1. ∇2 in 1-level decomposition

The 1-level decomposition of〈ιkv|∇2|ιkw〉 is

〈ιkv|∇2|ιkw〉= 〈ιkv|∇2|ιkw〉+ + 〈ιkv|∇2|ιkw〉0+ 〈ιkv|∇2|ιkw〉−,

where

〈ιkv|∇2|ιkw〉0 =
∑

θk(y)= θk(z)

〈ιky|∇2|ιkz〉v(y)w(z)

〈ιkv|∇2|ιkw〉+ =
∑

θk(y)< θk(z)

〈ιky|∇2|ιkz〉v(y)w(z)

〈ιkv|∇2|ιkw〉− =
∑

θk(y)> θk(z)

〈ιky|∇2|ιkz〉v(y)w(z).

That is, we express the product as contributions from levels to the same level, higher levels,
and lower levels. We will now investigate each of these terms individually. In the language
of matrices, these respectively correspond to diagonal, above diagonal, and below diagonal
blocks of the∇2 matrix:

〈ιkv|∇2|ιkw〉= vt


〈|〉0 〈|〉+ 〈|〉+ 〈|〉+
〈|〉− 〈|〉0 〈|〉+ 〈|〉+
〈|〉− 〈|〉− 〈|〉0 〈|〉+
〈|〉− 〈|〉− 〈|〉− 〈|〉0

w.
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5.1.1. Diagonal Blocks:〈|〉0

For some fixedl , 0≤ l ≤ k, a term of the form∑
θk(z)=θk(y)=l

〈φ((x− y)/2l )|∇2|φ((x− z)/2l )〉v(y)w(z)

contributes to〈|〉0.
However,〈φ((x−y)/2l )|∇2|φ((x−z)/2l )〉=2l (n−2)〈φ(x−y)|∇2|φ(x−z)〉=2l (n−2)L0

z−y.
Thus, we have

〈ιkv|∇2|ιkw〉0=
∑

l

2l (n−2)
∑

L0
z−yv(y)w(z).

5.1.2. Superdiagonal Blocks:〈|〉+

For some fixedl , 0≤ l ≤ k, a term of the form∑
θk(z)=l ′>l=θk(y)

〈φ((x− y)/2l )|∇2|φ((x− z)/2l ′)〉v(y)w(z)

contributes to〈|〉+.
Applying the inverse transform (Jk,l+1) to thew coefficients in the sum allows us to write

this term as ∑
θl+1(z)=l+1>l=θk(y)

〈φ((x− y)/2l )|∇2|φ((x− z)/2l+1)〉v(y)(Jk,l+1w)(z).

Thus, we have

〈ιkv|∇2|ιkw〉+ =
∑

l

2l (n−2)
∑

L+z−yv(y)(Jk,l+1w)(z).

5.1.3. Subdiagonal Blocks:〈|〉−

For some fixedl , 0≤ l ≤ k, a term of the form∑
θk(z)=l<l ′=θk(y)

〈φ((x− y)/2l ′)|∇2|φ((x− z)/2l )〉v(y)w(z)

contributes to〈|〉−.
This time applying the inverse transform (Jk,l+1) to thev coefficients in the sum allows

us to write this term as∑
θk(z)=l < l+1=θl+1(y)

〈φ((x− y)/2l+1)|∇2|φ((x− z)/2l )〉(Jk,l+1v)(y)w(z).

Thus, we have

〈ιkv|∇2|ιkw〉−=
∑

l

2l (n−2)
∑

L−z−y(Jk,l+1v)(y)w(z).
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5.1.4. Implementations

The above observations demonstrate the correctness of the following algorithm:

Input:v,w ∈Fk(Zn)

Output:ans=〈ιkv|∇2|ιkw〉 ∈ R
Letwtmp=w, let vtmp= v, let ans= 0
for l = 0 tok

ans← ans+ 2l (n−2)∑
θk(y)= θk(z)= l L

0
z−yv(y)w(z)

end for
for l = k− 1 down-to 0

ans← ans+ 2l (n−2)∑
θk(y)= l ,θl+1(z)= l+1L+z−yv(y)wtmp(z)

wtmp← Jl+1,l (wtmp)
end for
for l = k− 1 down-to 0

ans← ans+ 2l (n−2)∑
θl+1(y)= l+1,θk(z)= l L

−
z−yvtmp(y)w(z)

vtmp← Jl+1,l (vtmp)
end for

Note, we have made use of the fact thatJk,l = Jl+1,l · · · Jk,k−1 so that at the beginning of
each iteration in the second (last) loopwtmp= Jk,l+1w (vtmp= Jk,l+1v).

We observe that this algorithm isO(N) in time and space.
We may adapt this to an algorithm to computeu∈Fk(Zn)∗ such thatu(v)=〈ιkv|∇2|ιkw〉 :

Input:w ∈Fk(Zn)

Output:u such thatu(v)=〈ιkv|∇2|ιkw〉
Let wtmp=w, let u= 0∈Fk(Zn)∗, let utmp= 0∈F0(Zn)∗

for l = 0 tok
u(y)← u(y)+ 2l (n−2)∑

θk(y)= θk(z)= l L
0
z−yw(z)

end for
for l = k− 1 down-to 0

u(y)← u(y)+ 2l (n−2)∑
θk(y)= l ,θl+1(z)= l+1L+z−ywtmp(z)

wtmp← Jl+1,lwtmp
end for
for l = 0 tok− 1

utmp← Jt
l+1,l utmp

utmp(y)← utmp(y)+ 2l (n−2)∑
θl+1(y)= l+1,θk(z)= l L

−
z−yw(z)

end for
u← u+ utmpThe third loop is the result of transposing the linear operatorJl+1,l in

the last loop in the previous algorithm. We have also used the fact thatJt
k,l = Jt

k,k−1 · · · Jt
l+1,l

to ensure that at the beginning of each iteration in the third loop,utmp∈ Fl+1(Zn)∗.
It is easy to check that this is anO(N) algorithm in both time and space. It is very

important for atomic structure computation that this algorithm scales linearly with the
number of atoms. Without such a scaling, one can only compute electronic configurations
for small molecules.

The reader may note a similarity between this algorithm and other matrix–vector mul-
tiplies used to apply operators in a uniform wavelet basis. In fact, the 1-level algorithm
presented above is identical to the nonstandard multiply found in [4] and developed for or-
thonormal wavelet bases. The nonstandard multiply was introduced by Beylkin, Coifman,
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and Rokhlin to sparsify integral operators whose kernels were smooth or vanishing off the
diagonal, while keeping a uniform basis.

However, in contrast to that program of sparsification, interpolets allow one to make
the basis sparse, and, without introducing additional grid points, still be able to apply
the nonstandard multiply routines with any local operator. With interpolets we remove
any elements from the expansion that we believe will be insignificant, still having a good
approximation to our function at the points we retain. Beylkinet al. [4] express the matrix
elements of the operator itself in a nonstandard orthonormal basis and then remove those
matrix elements which are determined to be very small to produce a sparse matrix.

The use of interpolating scaling functions has achieved some degree of simplicity and
convenience in carrying out fast point-wise operations. Although there is no associated diffi-
culty in electronic structure calculations [1], for other applications the loss of orthogonality
might be too great an expense. In those cases, one might consider employing compactly
supported approximations to orthogonal interpolating functions found in [5]. It appears that
with some additional complexity one might be able to extend the present algorithms to other
wavelet bases. The additional complexity of other schemes and the need for fast point-wise
operations in our applications are the chief reasons we do not consider doing this in the
present work. Finally, there is a large body of work the reader may wish to consult [6, 17,
11, 21, 22] for adaptive refinement techniques when, in contrast to the case of electronic
structure calculations, the behavior of the needed refinement is not knowna priori.

5.1.5. Correctness in a 1-Level Touching Good Basis

The above decomposition of the product and the associated algorithm is what we seek to
extend to a good truncated basis. In practice, one takes the zero-lift representatives ofv and
w ∈FS

k and computes〈ιkṽ|∇2|ιkw̃〉. By the computation theorem of good truncated bases,
the value of(Jk1,k2ṽ)(y), y ∈ FS

k is independent of the representative (likewise forw),
however, we must also address the issue that(Jk1,k2ṽ)(y) 6= 0, y /∈ S (i.e., Jk1,k2ṽ 6= ˜Jk1,k2v),
and thusy /∈ Smay have a contribution to the decomposition above, requiring us to augment
S in order to get the right answer.

THEOREM 5.1. If one replaces Zn with S everywhere in the multilevel algorithm for
〈ιkv|∇2|ιkw〉, then the algorithm computes

〈ιkṽ|∇2|ιkw̃〉.

Proof. As mentioned in the remarks, the multilevel algorithm requiresJk,l = Jl+1,l · · ·
Jk,k−1, which is true in a good basis.

The 〈|〉0 computation proceeds identically for eitherZn or S, so the first loop will
contribute correctly the term〈ιkṽ|∇2|ιkw̃〉0.

To check the〈|〉+ contribution, one observes that the necessary term is

〈ιkṽ|∇2|ιkw̃〉− =
∑

l

2l (n−2)
∑

y∈Zn,z∈Zn:θl+1(y)=l+1,θk(z)=l

L−z−y(Jk,l+1ṽ)(y)w̃(z).

Suppose that∃y /∈ S and z∈ S such thatL+z−y 6= 0. This implies that supp{ιl+1y} ∩
supp{ιkz}has nonzero measure. Since supp{ιl+1y}⊂ supp{ιky}we conclude that supp{ιky} ∩
supp{ιkz} has nonzero measure. This cannot be so ifS is 1-level touching, and since
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w̃(z)= 0, z /∈ S, we may restrict the sums overy andz in the contribution

2l (n−2)
∑

y∈ S,z∈S:θl+1(y)=l+1,θk(z)=l

L−z−y(Jk,l+1ṽ)(y)w̃(z).

The proof for〈|〉− is identical with thev’s andw’s reversed.

Immediately we have the following.

COROLLARY 5.2. If one replaces Zn with S everywhere in the multilevel algorithm
for u such that u(v)=〈ιkv|∇2|ιkw〉, then the algorithm computes

u∈ (FS
k

)∗
, u(v)=〈ιkṽ|∇2|ιkw̃〉.

The computation of〈ιkv|∇2|ιkw〉 serves as a template for another common computation
one may wish to perform, namely〈ιkv | ιkw〉=

∫
(ιkv)(x)(ιkw)(x) dnx, i.e. theL2(Rn)

inner product ofιkv andιkw.

5.2. Computing Other Operators

To compute〈ιkṽ | ιkw̃〉, one simply replacesL0, L+, andL−with G0
y=〈φ(x− y) |φ(x)〉,

G+y =〈φ(x− y) |φ(x/2)〉, andG−y =〈φ((x− y)/2) |φ(x)〉, and then replaces the factors
of 2l (n− 2) with 2ln. After that, the algorithms and theorems for∇2 carry over directly.

The above procedure can be used for creating a multilevel algorithm for any operator,O,
which is

local: supp{O f }⊂ supp{ f }
translation invariant:O f (x + a)= (O f )(x + a)
homogeneous:O f (sx)= sα(O f )(sx)

by forming the appropriate coefficients,O{0,+,−}y , and inserting appropriate factors of 2l (α+d).
However, locality is the only property which is really required forO(N) multilevel

algorithms so long as one can computeO{0,+,−}l ,m,m′ efficiently.
As an example of a local, homogeneous, but not translationally invariant operator, we shall

discuss the coefficients for the multilevel algorithm for thex̂1 operator in two dimensions.
We first consider the coefficientŝx1

{0,+,−}
l ,m,m′ given by

x̂1
{0,+,−}
l ,m,m′ =

∫
φ
(
(x1−m1)/2

l (+1)
)
φ
(
(x2−m2)/2

l (+1)
)

× x1φ
(
(x1−m′1)/2

l (+1)
)
φ
(
(x2−m′2)/2

l (+1)
)

dx1 dx2;

i.e.

x̂1
0
l ,m,m′ =

∫
φ((x1−m1)/2

l )φ((x2−m2)/2
l )

× x1φ((x1−m′1)/2
l )φ((x2−m′2)/2

l ) dx1 dx2

x̂1
+
l ,m,m′ =

∫
φ((x1−m1)/2

l )φ((x2−m2)/2
l )

× x1φ((x1−m′1)/2
l+1)φ((x2−m′2)/2

l+1) dx1 dx2

x̂1
−
l ,m,m′ =

∫
φ((x1−m1)/2

l+1)φ((x2−m2)/2
l+1)

× x1φ((x1−m′1)/2
l )φ((x2−m′2)/2

l ) dx1 dx2.
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Separating thex1 andx2 integrations, we see from this that we may writex̂1
{0,+,−}
l ,m,n =

2l (d− 1)G{0,+,−}
(m1−n1)/2l X

{0,+,−}
l ,m2,n2

, where

X{0,+,−}l ,m,n =
∫
φ
(
(x−m)/2l (+1)

)
xφ
(
(x− n)/2l (+1)

)
dx,

andG is defined above. The problem of computing thex̂1 coefficients has been reduced
to computing theX coefficients and then doing a multiply with the already knownG
coefficients.

In addition, one has∫
φ
(
(x−m)/2l (+1)

)
xφ
(
(x− n)/2l (+1)

)
dx = n

∫
φ
(
(x + n−m)/2l (+1)

)
φ
(
x/2l (+1)

)
dx

+
∫
φ
(
(x + n−m)/2l (+1)

)
xφ
(
x/2l (+1)

)
dx,

and, thus,∫
φ
(
(x−m)/2l (+1)

)
xφ
(
(x− n)/2l (+1)

)
dx= n2l G{0,+,−}

(m−n)/2l + 22l S{0,+,−}
(m−n)/2l ,

where

S0
y =

∫
φ(x− y)xφ(x) dx

S+y =
∫
φ(x− y)xφ(x/2) dx

S−y =
∫
φ((x− y)/2)xφ(x) dx.

Thus, we see that for thêx1 operator

x̂1
{0,+,−}
l ,m,n = 2l G{0,+,−}

(m2−n2)/2l

(
n2l G{0,+,−}

(m−n)/2l + 22l S{0,+,−}m−n

)
,

giving an efficient means to compute the multilevel coefficient for this operator.

5.3. ∇2 in 2-Level Decomposition

The previous algorithm for 1-level touching good bases can be expanded to 2-level
touching good bases. One may wish to do this because one finds that the 1-level touching
property is too stringent and requires one to augment one’s basis set far too much to be
practical computationally.

Much of the reasoning for the 2-level case can be found in the details of the 1-level case,
so the exposition here will be more compact. The resulting algorithm will be correct for
2-level touching good bases.

The 2-level decomposition of〈ιkv|∇2|ιkw〉 is

〈ιkv|∇2|ιkw〉 = 〈ιkv|∇2|ιkw〉0+ 〈ιkv|∇2|ιkw〉+ + 〈ιkv|∇2|ιkw〉−

+ 〈ιkv|∇2|ιkw〉++ + 〈ιkv|∇2|ιkw〉−−,
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where

〈ιkv|∇2|ιkw〉0 =
∑

θk(y)=θk(z)

〈ιky|∇2|ιkz〉v(y)w(z)

〈ιkv|∇2|ιkw〉+ =
∑

θk(y)+1=θk(z)

〈ιky|∇2|ιkz〉v(y)w(z)

〈ιkv|∇2|ιkw〉− =
∑

θk(y)−1=θk(z)

〈ιky|∇2|ιkz〉v(y)w(z)

〈ιkv|∇2|ιkw〉++ =
∑

θk(y)+1<θk(z)

〈ιky|∇2|ιkz〉v(y)w(z)

〈ιkv|∇2|ιkw〉−− =
∑

θk(y)−1>θk(z)

〈ιky|∇2|ιkz〉v(y)w(z),

which corresponds to the matrix decomposition:

〈ιkv|∇2|ιkw〉= vt


〈|〉0 〈|〉+ 〈|〉++ 〈|〉++
〈|〉− 〈|〉0 〈|〉+ 〈|〉++
〈|〉−− 〈|〉− 〈|〉0 〈|〉+
〈|〉−− 〈|〉−− 〈|〉− 〈|〉0

w.
The key idea is to evaluate the diagonal and first off-diagonal blocks of the∇2 matrix and

then to compute the other blocks above and below the tridiagonal through the transforms.

5.3.1. 〈|〉0, 〈|〉+, 〈|〉−, 〈|〉++, and〈|〉−−

The definitions for the contributions in the decomposition proceed just as they did for
the 1-level case,

〈ιkv|∇2|ιkw〉0 =
∑

l

2l (n−2)
∑

θk(z)=θk(y)=l

L0
z−yv(y)w(z),

〈ιkv|∇2|ιkw〉+ =
∑

l

2l (n−2)
∑

θk(z)−1=θk(y)=l

L+z−yv(y)w(z),

〈ιkv|∇2|ιkw〉− =
∑

l

2l (n−2)
∑

θk(z)=θk(y)−1=l

L−z−yv(y)w(z),

〈ιkv|∇2|ιkw〉++ =
∑

l

2l (n−2)
∑

θk(z)−1>l=θk(y)

L++z−yv(y)(Jk,l+2w)(z),

〈ιkv|∇2|ιkw〉−− =
∑

l

2l (n−2)
∑

θk(z)=l<θk(y)−1

L−−z−y(Jk,l+2v)(y)w(z).

5.3.2. Implementations

Input:v,w ∈Fk(Zn)

Output:ans=〈ιkv|∇2|ιkw〉 ∈ R
Letwtmp=w, let vtmp= v, let ans= 0
for l = 0 tok

ans← ans+ 2l (n−2)∑
θk(y)= θk(z)= l L

0
z−yv(y)w(z)
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end for
for l = 0 tok− 1

ans← ans+ 2l (n−2)∑
θk(y)= l ,θk(z)= l+1L+z−yv(y)w(z)

end for
for l = 0 tok− 1

ans← ans+ 2l (n−2)∑
θk(y)= l+1,θk(z)= l L

−
z−yv(y)w(z)

end for
for l = k− 2 down-to 0

ans← ans+ 2l (n−2)∑
θk(y)= l ,θl+2(z)= l+2L++z−yv(y)wtmp(z)

wtmp← Jl+1,lwtmp
end for
for l = k− 2 down-to 0

ans← ans+ 2l (n−2)∑
θl+2(y)= l+2,θk(z)= l L

−−
z−yvtmp(y)w(z)

vtmp← Jl+1,lvtmp
end for

We adapt this algorithm to computeu ∈ Fk(Zn)∗ such thatu(v)=〈ιkv|∇2|ιkw〉.
Input:w ∈Fk(Zn)

Output:u such thatu(v)=〈ιkv|∇2|ιkw〉
Letwtmp=w, let u= 0∈Fk(Zn)∗, let utmp= 0∈F0(Zn)∗

for l = 0 tok
u(y)← u(y)+ 2l (n−2)∑

θk(y)= θk(z)= l L
0
z−yw(z)

end for
for l = 0 tok− 1

u(y)← u(y)+ 2l (n−2)∑
θk(y)= l ,θk(z)= l+1L+z−yw(z)

end for
for l = 0 tok− 1

u(y)← u(y)+ 2l (n−2)∑
θk(y)= l+1,θk(z)= l L

−
z−yw(z)

end for
for l = k− 2 down-to 0

u(y)← u(y)+ 2l (n−2)∑
θk(y)= l ,θl+2(z)= l+2L++z−ywtmp(z)

wtmp← Jl+1,lwtmp
end for
for l = 0 tok− 2

utmp← Jt
l+1,l utmp

utmp(y)← utmp(y)+ 2l (n−2)∑
θl+2(y)= l+2,θk(z)= l L

−−
z−yw(z)

end for
u← u+ utmp

6. EFFICIENT IMPLEMENTATION

We have produced a very successful 3D implementation of all of the above algorithms
for the interpolet used as this paper’s example (m= 3). Implementation details are given
in this section. The ideas used to make this implementation efficient for all of the above
algorithms.

The purpose of this section is to give additional information to readers who wish to
implement these algorithms themselves.
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6.1. Data Structures

The interpolet data and function samples are kept in a sequence of blocks at various
levels. Each block at levelk contains the points of a rectangular subset ofCk−1. Since
Dk=Ck−1−Ck, we use the collection of blocks at levelk< p (p being the top level) to
represent a rectangular subsetOk, ignoring theCk points of each of these blocks. In our
implementation, these extraCk points hold the value 0 in between operations and take on
useful intermediate values during operations. Since we are working in three dimensions,
this multiplies the storage required by a factor of about8

7, which we found an acceptable
cost for its advantages.

The coefficients for the transforms and operators are kept in various 3D arrays. Although
it is possible to build the coefficients upon demand from a set of 1D arrays of coefficients,
we have found that the arithmetic cost of doing this is much greater than the cost of storing
them (about 10 flops are required for each∇2 coefficient, while the 3D arrays are still small
enough to be stored in cache). We have (in Fortran notation) the filters cs (0 : 3, 0 : 3, 0 : 3),
SAMELEVEL (0 : 5, 0 : 5, 0 : 5), ONELEVEL (0 : 8, 0 : 8, 0 : 8), and (for 2-level algorithms)
TWOLEVEL (0 : 14, 0 : 14, 0 : 14) (note: we have made use of the fact that our operators
are symmetric to cut the size of these arrays by a factor of1

8 and use ONELEVEL and
TWOLEVEL for both upward and downward interlevel communication).

6.2. Implementation Overview

The blocks described in the previous section are used as the fundamental objects for
manipulation. The computation proceeds by employing block-to-block subroutines for the
various operations, having every block at a level send data to every block at the same level,
one level up or down, or (for 2-level algorithms) two levels up or down.

The number of blocks at each level is not very large, and if a subroutine determines
that the intersection of two blocks is empty (which it does by examining the bounding
rectangles), then it returns immediately. Thus, while this algorithm is to beO(B2), whereB
is the number of blocks, it remainsO(N), whereN is the number of actual points, because
B is much smaller thanN.

6.3. Block-to-Block Subroutines

The block-to-block subroutines are all designed to take two blocks (source and desti-
nation) and a set of filter coefficients and place the result of convolving the filter with the
source block in the overlapping points of the destination block. There is a block-to-block
subroutine for the interpolet transform, its transpose, its inverse, and its inverse transpose,
as well as operator application routines for the same-level operator, up-one-level operator,
down-one-level operator, up-two-levels operator, and the down-two-levels operator.

All of these routines precompute the bounding box for the points in the destination block
which are in the range of influence of the source block and for each point in this subblock,
the bounding box for the points in the source block in the domain of influence of the
destination point. The result of this precomputation is that the only data values of the source
(destination) which are accessed are the ones which are read (modified). This decreases the
number of data accesses in our test problems by a factor of 7.

Additionally, blocking the computation generally increases the locality of access for the
data. More data requests hit the cache than would occur in a more arbitrarily arranged
construction.
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7. RESULTS AND CONCLUSIONS

With interpolets, it is possible to carry outO(N) computations in truncated bases, where
N is the number of elements retained in the truncation, without having to augment the
grid of points associated with the functions maintained in the basis. Along with allowing
one to compute common linear physical operations, interpolet algorithms also allow one to
transfer between function values and multiscale expansion coefficients on grids of variable
resolution, recovering the same results as one would obtain working with data on a full grid
of arbitrary resolution but without introducing additional grid points into the calculation.
This allows local nonlinear couplings to be computed quickly without the introduction of
additional sample points and without the introduction of additional approximations which
must be controlled.

These algorithms have been implemented in Fortran90 and have subsequently been
adopted for use in electronic structure computations as described in the Introduction. Prior to
this, we had been using very simple, na¨ıve O(N2) algorithms which implement each trans-
form and operator as multiplication by the multiscale representation of the corresponding
matrix. These multiplies check all points for being within interaction range and then con-
struct the appropriate matrix element as needed. This is required in the na¨ıve approach
because the variety of interscale matrix elements is too wide to store in a table of reasonable
size. This algorithm ultimately scales quadratically with the number of refinement levels for
our application. This is because, as described in the Introduction, basis functions are kept
in the basis whenever they contain an atomic nucleus within their support. All functions
in this subset of significant size of the basis functions associated with each atomic center
therefore touch one another, and the multiscale matrices contain dense blocks connecting
all of these elements of a given center with one another. Because the number of functions
associated with a given center grows linearly with the number of refinement scalesk, the
number of operations required in the na¨ıve approach of multiplying directly by these dense
matrices scales quadratically with the number of functions in the basis. For reference, a typ-
ical number of refinement levels in electronic structure calculations of the lighter elements
would bek= 5, as employed in the carbon atom [2] and the nitrogen molecule [1].

A comparison with the previous implementation in Fortran90 on the same processor
(Superscalar SPARC Version 9, UltraSPARC) demonstrates the speed improvements and
scaling which can be achieved with the new approach. The “time” axis is the CPU time
taken by one application of the∇2 operator. The “k” axis represents the number of levels
of refinement made in the basis and is proportional to the number of points inS.

Figure 7 compares the runtimes of∇2 in three dimensions on a 1-level touching good
basis with third-order interpolets consisting of concentric cubes of size 153 centered about
one atomic nucleus, as would be appropriate for the calculation of the electronic structure
of a single atom. Although there is initially a significantO(N) contribution, as a function
of the number of refinement levelsk, the times for the na¨ıve approach show the constant
increments in slope characteristic of a quadratic function. The new approach compares very
favorably and is about 40 times faster for typical values ofk. (Note the difference in vertical
scale between the two figures.)

Although the comparison in Fig. 7 is quite favorable for the new algorithm, one must
bear in mind that, given the typical decay in the interpolet expansion coefficients about
an atom [2, 1], the functions which are appropriate to maintain in the expansions tend to
have the 2-level touching property, not the 1-level touching property. Figure 8 compares the
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FIG. 7. The previously used implementation is on the left, and the implementation employing a 1-level
touching algorithm is on the right. (Note the difference in scale on the vertical axes.)

runtimes of∇2 in three dimensions on a 2-level touching good basis of concentric cubes
of size 93, where the speedup is just as dramatic as before, now by approximately a factor
of 30.

Figure 9 compares the runtimes of∇2 in three dimensions on a 2-level touching good
basis of two refinement centers, with refinements now consisting of cubes of size 93 (similar

FIG. 8. The previously used implementation is on the left, and the implementation employing a 2-level
touching algorithm is on the right. (Note the difference in scale on the vertical axes.)
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FIG. 9. The previously used implementation is on the left, and the implementation employing a multilevel
algorithm is on the right. (Note the difference in scale on the vertical axes.)

to Fig. 6). This situation arises in the calculation of the electronic ground state of the nitrogen
molecule, N2. Note that with the introduction now of two atomic centers the times are again
consistent with the scalings described above: The run times only double in the multilevel
algorithm, but they quadruple in the na¨ıve algorithm.

Having considered the efficiency of the algorithms, we next turn to the use of these
algorithms in the solution of Poisson’s equation to determine electrostatic fields, which was
the rate-limiting step in the calculations carried out in [2, 1]. From those calculations, we
were aware that the combination of conjugate gradients with the simple preconditioning
consisting of just applying the inverse of the diagonal elements of the Laplacian matrix leads
to an algorithm requiring very few iterations. It was the application of the operator within
each conjugate gradient iteration which limited the efficiency of those earlier calculations.

Figures 10–12 illustrate results for varying levels of refinement in the two different
systems. The first system consists of refinements centered about a single atomic center
within a cubic super cell of side 15 Bohr radii with periodic boundary conditions. (One
Bohr radius is approximately 0.529̊A.) The second system contains two refinement centers
separated at a distance of 2 Bohr radii, approximately the internuclear separation in the
nitrogen molecule. This latter system resides within a rectangular supercell of dimensions
(15 Bohr)2× (17 Bohr). In both cases, the spacing of the grid at the coarsest scale is 1 Bohr,
and the finest spacing is 2−k Bohr. At k= 22, the greatest refinement considered in our
numerical experiments, the finest grid spacing is approximately 0.24× 10−6 Å. A full grid
at this resolution would contain 2.8× 1023 points. Our truncated basis contains only about
60,000 functions in this case.

Figure 10 compares, as a function of the number of refinement levelsk, the condition
number of the Laplacian represented in a truncated interpolet basis (the “stiffness matrix”
for the basis) and in an untruncated orthogonal basis at the corresponding resolution. The
figure also shows the effect on the condition number of the interpolet stiffness matrix of the
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FIG. 10. The condition number of the Laplacian operator represented in truncated multiresolution interpolet
basis as a function of the number of refinement levelsk with and without simple diagonal preconditioning and
compared with the condition number in an orthogonal basis with the same resolution. Lines indicate results for
bases with a single atomic center of refinement and points represent results for two atomic centers corresponding
to the nitrogen molecule.

simple diagonal preconditioner described above. The condition numbers for the truncated
interpolet bases were determined numerically using the operators implemented as described
above. The curves indicate results for the system with a single atomic center, and the symbols
indicate results for the two-atom system. Comparing the results for the one- and two-atom
cases suggests that, apart from some transient behavior for smallk, the condition number
is not sensitive to the number of atoms and depends primarily on the number of refinement
levelsk.

Although finite basis representations of the Laplacian constructed from orthogonal func-
tions at a given resolution should all have similar condition numbers, the fact that the
interpolet basis is not orthogonal allows the condition numbers of multiscale interpolet op-
erators to be quite different than their single-scale counterparts.Compared to an orthogonal
basis, the condition number in the interpolet representation is already over two orders of
magnitude superior at the typicalk= 5 levels of refinement. This comparison continues
to improve with increasing scale. The orthogonal condition number scales inversely as the
square of the spacing on the grid of maximum resolution, whereas the interpolet condition
number scales inversely with approximately the 5/4 power of the resolution, as deter-
mined from the slope in the figure. The interpolet basis itself therefore provides an intrinsic
form of preconditioning. Figure 10 shows that our simple explicit, diagonal preconditioner
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FIG. 11. Convergence of the solution to Poisson’s equation for the nuclear potential in a nitrogen molecule
in an interpolet basis withk= 8 levels of refinement about each nucleus.

improves the scaling of the condition number, which now scales merely as the inverse of
the resolution. (Note the lower slope of the lower curve.) Atk= 5 levels of refinement
the improvement is only a factor of three but becomes more significant as the number of
refinements increases.

Figure 11 shows the convergence of the preconditioned conjugate gradient algorithm
in the solution of Poisson’s equation. As a simple example, we solve for the electrostatic
potential which arises from the two nuclei in a nitrogen molecule. In this calculation we use
k= 8 levels of refinement, a somewhat higher level of resolution than would be employed in
calculations of the N2 molecule. For this calculation, the charge density of each nucleus is
modeled as a three-dimensional Gaussian of root mean square widthσ along each direction
equal to the spacing on the finest scale. After an initial phase of about twenty iterations, the
convergence becomes nearly perfectly exponential. This procedure reduces the magnitude
of the residual vector by 10 orders of magnitude in 100 iterations. This is very good per-
formance for a system consisting of 14,000 degrees of freedom with a Laplacian operator
with a nominal single-scale condition number of about 65,000 at this level of resolution.
The slope of this exponential portion of the convergence curve corresponds to a reduction
in error at each iteration by 25%. One would obtain the same error reduction in a simple
weighted iterative Jacobi algorithm (with the inverse of the maximum eigenvalue as the
weight) applied to an operator with condition numberc≈ 4. The quantityc, the inverse
of the fractional improvement in the magnitude of the residual, we define as theeffective
condition numberfor the algorithm.
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FIG. 12. Effective condition number of Poisson’s equation for the nuclear potential in a nitrogen molecule
with simple diagonal preconditioning as a function ofk the number of levels of refinement about each nucleus.

Figure 12 shows this effective condition numberc for the conjugate gradient algorithm
with simple diagonal preconditioning as a function of the number of refinement levelsk
for the solution of Poisson’s equation for the nuclei in the nitrogen molecule. In all cases
the extent of the nucleiσ is again set to the spacing of the finest grid. We note that after
about six refinements, the effective condition number is essentially constant. The example
from Fig. 11 is, therefore, representative of the typical rate of convergence attained. These
results indicate that, regardless of the amount of refinement, a constant number of iterations
will suffice to produce a result of a given accuracy, even as the nominal condition number
for an orthogonal stiffness at the corresponding resolution approaches 1.8×1013 atk= 22.
Because the computational work involved in each iteration is linear in the number of points
in the basis, this approach appears to produce the solution to Poisson’s equation inO(N)
time for these multiresolution bases.

APPENDIX: NOTATION

Ck 2k · Zn for k ≥ 0, Zn for k < 0.
Dk Ck−1−Ck for k ≥ 0, for k < 0.
θk min(k,m) wherem is the largest integer such that 2m

divides all the components ofy.
Fk(S) the space of functions overS⊂ Zn.
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Ik(φ, S) the space of linear combinations ofφ((x− y)/(2θk(y) ) for y∈ S⊂ Zn.
ι
φ
k the mapping fromS→ Ik(φ, S) which takesy→ φ((x− y)/2θk(y) )

and is linearly extended to a map.
FS

k Fk(Zn)/Fk(Zn− S).

IS
k (φ) Ik(φ, Zn)/Ik(φ, Zn− S).
ṽ the zero-lift representative ofv ∈FS

k , i.e. ṽ ∈Fk,
such that ˜v(y)= v(y), y∈ S, andṽ(y)= 0.

V∗ the dual space of the vector spaceV .
Jk1,k2 the map,Fk1 → Fk2, given byJk1,k2 = ι−1

k2
◦ ιk1.

Jk short forJ0,k.
J−k short forJk,0.
〈 f |O|g〉 the matrix element

∫
f (x)Og(x) dnx.
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